Differential frequency-dependent regulation of transmitter release by endogenous nitric oxide at the amphibian neuromuscular synapse.

نویسندگان

  • S Thomas
  • R Robitaille
چکیده

Nitric oxide (NO) is a potent neuromodulator in the CNS and PNS. At the frog neuromuscular junction (nmj), exogenous application of NO reduces neurotransmitter release, and NO synthases (NOSs), the enzymes producing NO, are present at this synapse. This work aimed at studying the molecular mechanisms by which NO modulates synaptic efficacy at the nmj using electrophysiological recordings and Ca(2+)-imaging techniques. Bath application of the NO donors S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside decreased end plate potential (EPP) amplitude as well as the frequency of miniature EPPs but not their amplitude. Ca(2+) responses elicited in presynaptic terminals by single action potentials were unaffected by NO, but responses evoked by a short train of stimuli were increased. Tonic endogenous production of NO was observed as suggested by the increase in EPP amplitude by bath application of the NO scavenger hemoglobin and the neuronal NOS inhibitor 3-bromo-7-nitroindazole sodium salt. A soluble guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY-83583), increased EPP amplitude and occluded the effects of the NO donor, suggesting that NO acts via a cGMP-dependent mechanism. High-frequency-induced depression was reduced in the presence of the NO scavenger but not by LY-83583. However, adenosine-induced depression was significantly reduced after bath perfusion of SNAP and in the presence of LY-83583. Our results indicate that NO regulates transmitter release and adenosine-induced depression via a cGMP-dependent mechanism that occurs after Ca(2+) entry and that high-frequency-induced synaptic depression is regulated by NO in a cGMP-independent manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role for the skeletal muscle action potential in non-Hebbian long-term depression at the amphibian (Bufo marinus) neuromuscular junction.

Retrograde signaling from skeletal muscle cells to motor nerve terminals is a recognized mechanism for modulating the strength of neuromuscular transmission. We recently described a form of long-term depression of transmitter release at the mature neuromuscular junction that is dependent on the production of nitric oxide, most likely by the muscle cell (Etherington and Everett 2004 J Physiol (L...

متن کامل

Postsynaptic production of nitric oxide implicated in long-term depression at the mature amphibian (Bufo marinus) neuromuscular junction.

We report here evidence for endogenous NO signalling in long-term (>1 h) synaptic depression at the neuromuscular junction induced by 20 min of 1 Hz nerve stimulation. Synaptic depression was characterized by a 46% reduction in the end-plate potential (EPP) amplitude and a 21% decrease in miniature EPP (MEPP) frequency, but no change to MEPP amplitude, indicating a reduction in evoked quantal r...

متن کامل

Effect of nitric oxide on skin blood flow of intact and morphine- dependent rats

Introduction: The relation between morphine and nitric oxide release has been shown. Due to important role of nitric oxide in regulation of skin blood flow, the aim of this study was to investigate the effect of nitric oxide synthase inhibitor (L-NAME) and nitric oxide synthesis precursor (L-arginine) on skin blood flow of intact and morphine-dependent rats. Methods: Skin blood flow of hind pa...

متن کامل

Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse.

The differential regulation of synaptic transmission by internal Ca(2+) stores of presynaptic terminals and perisynaptic Schwann cells (PSCs) was studied at the frog neuromuscular junction. Thapsigargin (tg), an inhibitor of Ca(2+)-ATPase pumps of internal stores, caused a transient Ca(2+) elevation in PSCs, whereas it had no effect on Ca(2+) stores of presynaptic terminals at rest. Tg prolonge...

متن کامل

Modulation of Synaptic Efficacy and Synaptic Depression by Glial Cells at the Frog Neuromuscular Junction

The ability of perisynaptic glial cells to modulate transmitter release and synaptic depression was studied at the frog neuromuscular junction (nmj). Injection of GTPgammaS in perisynaptic Schwann cells (PSCs), glial cells at this synapse, induced a reduction in the amplitude of nerve-evoked synaptic responses but had no effect on the frequency, the amplitude, or the duration of the miniature e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 4  شماره 

صفحات  -

تاریخ انتشار 2001